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Abstract. A sum rule due to Das et al. is reanalyzed using a euclidian space approach and a Padé resum-
mation procedure. It is shown that the result is essentially determined by the matrix elements of dimension
six and dimension eight operators which have recently been measured by the ALEPH collaboration. The
result is further improved by using the vector spectral function which must be extrapolated to the chiral
limit. This extrapolation is shown to be reliably performed under the constraint of a set of sum rules. The
sum rule is employed not as an approximation to Mπ+ −Mπ0 but as an exact result for a chiral low-energy
parameter. A sufficiently precise evaluation provides also an estimate for a combination of subleading
electromagnetic low-energy parameters.

1 Introduction

Chiral perturbation theory (e.g. [1] for a comprehensive
review) is now claiming to reach such a high degree of
accuracy in some situations that it is becoming necessary
to deal quantitatively with radiative corrections in low
energy processes. An important example is the pion-pion
scattering amplitude for which the two-loop contribution
has recently been evaluated [2,3]. The relevance of this re-
action for probing experimentally a basic issue in the spon-
taneous breaking of chiral symmetery in QCD is discussed
in some detail in [2]. Calculations of radiative corrections
have started to be performed both for the pionium atomic
bound state (e.g. [4] and references therein), in view of
an experiment planning to form pionium atoms at CERN
[5], and for the scattering amplitude [6,7]. The framework
for performing such calculations is a natural extension of
the conventional chiral expansion to include the photon
as a dynamical quantum field [8]. This extension brings in
a set of new, a priori unknown, low-energy constants. At
chiral order two, a single constant appears (which will be
denoted by C below) while at the next chiral order, one
has to deal with fourteen new constants called ki in the
case of the SU(2) × SU(2) chiral group [6,7].

The purpose of this paper is to reanalyze the classic
sum rule of Das et al. [9]. Since experimental data has
started to become available from τ decays into hadrons,
the sum rule was discussed several times in the litera-
ture [13–15] using as input experimentally measured vec-
tor and axial-vector spectral functions. One must be cau-
tious, however, that the sum rule can at best provide an
approximation to the π+ − π0 mass difference if the spec-
tral functions are not extrapolated to the chiral limit. In-
deed, the derivation is made in the limit, mu = md = 0

and, strictly speaking, the integral diverges if one uses
physical spectral functions over an infinite range. In mod-
ern context, the sum rule must be interpreted as an exact
result for the low-energy constant C. This constant ap-
pears in the leading term of the chiral expansion of the
π+ − π0 mass difference

M2
π+ − M2

π0 =
2e2C

F 2 + O(e2M2
π0)

+O((mu − md)2) + O(e4) . (1)

The corrective terms O(e2M2
π0) and O((mu − md)2) in-

volve a number of low energy constants ki and one O(p4)
constant (l7) respectively [7,10]. The order of magnitude
of low-energy constants such as ki is known from rather
general considerations on effective theories [11] to be ki '
F 2

π/Λ2, where Λ is the typical mass of the massive states,
not included in the effective theory, i.e. Λ ' Mρ (or MK ,
Mη in the SU(2)×SU(2) expansion). This enables one to
estimate that the corrective terms in (1) could be as large
as 20 − 30%. Our claim is that by a clever use of τ -decay
data recently released by the ALEPH collaboration [12,
15] it is actually possible to perform the sum rule eval-
uation of C in such a precise way as to actually provide
an estimate for the combination of low-energy constants
involved in the corrective terms in (1).

In practice, we advocate an approach in which one
first constructs the QCD correlation function 〈V V − AA〉
in the chiral limit in euclidian space, an idea which was
proposed in [16]. A key ingredient for this construction is
the experimental measurement by the ALEPH collabora-
tion [15] of the vacuum matrix elements of the dimension
six and dimension eight combination of operators which
control the first two terms in the asymptotic expansion
of the chiral correlator. In euclidian space, far from the
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resonance region, this asymptotic expansion is expected
to be accurate down to rather low momenta values, say
p ' 2 GeV. The task is then to interpolate a smooth func-
tion of p, the value of which is known at zero (in terms
of Fπ in the chiral limit), in a finite momentum range. In
this approach, the momentum integral in the [0,∞] range
can then be performed exactly. It will be argued that the
only knowledge of the two operator matrix elements (to-
gether with Fπ) constrains the value of C to a level close
to 10%. The estimate will then be refined by using more
detailed experimental information on the vector and the
axial-vector spectral functions.

2 Description of the method

The starting point is the sum rule derived by Das et al.
[9] (a quick derivation can be found in [17]) written as an
integral in four dimensional euclidian space. Performing
the angular integration, one expresses the constant C as
a one dimensional integral

C =
3
4

1
16π2

∫ ∞

0
ds s

[
Π
◦

A (−s)− Π
◦

V (−s)
]

(2)

where Π
◦

A and Π
◦

V are defined as the limit when mu =
md = 0, e2 = 0 of the form-factors ΠA and ΠV associated
with the axial-vector and the vector two-point correlation
function. ΠV , for instance, is defined as

i

∫
d4x eipx

〈
0|TVµ(x)V †

ν (0)|0〉
= (pµpν − p2gµν)ΠV (p2) + p2gµνΠ0

V (p2) , (3)

Vµ being the charged vector current Vµ(x) = ū(x)γµd(x).
An exactly analogous definition holds for ΠA.

Formula (2) is exact provided chiral symmetry is spon-
taneously broken in QCD with two massless quarks. It is
of interest to further consider the SU(3) × SU(3) chiral
limit obtained by sending ms to zero as well. However,
as will be seen in the sequel, the uncertainties involved
in this extrapolation are too large and do not permit a
useful evaluation of C0 = limms=0 C. Convergence of the
integral in (2) follows from applying the operator-product
expansion [18,19]. The operators must belong to the (3, 3)
representation of the SU(2) × SU(2) group. In the limit
mu = md = e2 = 0 the only such operators that one can
construct are of dimension six or more. As these operators
are order parameters for chiral symmetry transformations
one a priori expects that their vacuum expectation values
will be non-vanishing. The following asymptotic expansion
therefore holds,

lim
p2→∞

Π
◦

A (−p2)− Π
◦

V (−p2) =
λ6

p6 +
λ8

p8 + . . . (4)

In QCD, λ6 and λ8 are not exactly constants except at
leading order in αs. At higher orders, corrections carry
logarithmic-type p2 dependences. In the leading-logarith-
mic approximation, this p2 variation is found to be rather

slow, such that the approximation of taking constant val-
ues for λ6 and λ8 will be accurate in a reasonably large
energy region. We will return to this point in Sect. 4. The
parameters λ6 and λ8 have been determined experimen-
tally using τ decay data [15]. The method consists in us-
ing the analyticity properties of the two-point functions
together with Cauchy theorem, which leads to equations
like ∫ M2

τ

0
dsP kl(s) [ρA(s) − ρV (s)]

=
1

2iπ

∮
|z|=M2

τ

dz P kl(z) [ΠA(z) − ΠV (z)] (5)

where P kl(s) can be any polynomial. A convenient set is
[20]

P kl(s) =
(

1 − s

M2
τ

)k+2(
s

M2
τ

)l (
1 +

2s

M2
τ

)
,

k, l > 0 . (6)

For k = l = 0 the left hand side of (5) reduces to a dif-
ference of total τ decay rates. These polynomials have the
further merit to suppress the contributions which are close
to the cut in the integral over the circle so that one can
use asymptotic QCD expansions with some confidence in
the righthand side of (5). Using this method, the ALEPH
collaboration has determined the value of the following
dimensionless integrals involving λ6 and λ8,

δ(2n) = − 4πi

M2
τ

∮
|z|=M2

τ

dzP 00(−z)
λ2n(z)

zn
, n = 3, 4 (7)

to be [15], δ(6) = −0.058±0.006 and δ(8) = 0.0170±0.0014.
Ignoring the p2 dependence of λ6 and λ8 (the validity of
this approximation in the present situation can be checked
explicitly for λ6 and will be found in Sect. 4 to be excel-
lent) one deduces,

λ6 = (7.58 ± 0.80) 10−3 GeV6

λ8 = (−1.07 ± 0.12) 10−2 GeV8 . (8)

The result for λ6 is in reasonable agreement with that
obtained earlier [21]. An analysis of the ALEPH data,
making use of negative moments performed very recently
[22] leads to values compatible with (8) although slight-
ly smaller. It is perhaps important to stress that, even
though λ6 and λ8 control the expansion of a chiral limit
correlator they are effectively correctly determined from
data in which mu, md 6= 0. This is because quark mass
effects are properly taken into account in the fit as they
occur in the operator-product expansion via operators of
lower dimensionality and the contribution of dimension
six linear in the quark mass (involving the so-called mixed
condensate) happens to vanish at leading order in αs [23].
In other terms, the chiral correction to λ6 is strongly sup-
pressed. A priori, there is no reason for a similar suppres-
sion to hold for λ8, but this parameter is of lesser practical
importance in the calculation. A key assumption which is
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made in the above determination of λ6 and λ8 concerns,
of course, the validity of truncating the asymptotic expan-
sion (4) at order eight for p = Mτ . We will see below that
this assumption is internally consistent but it is not easy
to estimate the error induced by this truncation. For this
purpose, one should be able to determine more asymptotic
parameters and check the stability of the determination.

Let us now explain the method for evaluating the in-
tegral in (2). We first split the integrand in two parts

Π
◦

A (−s)− Π
◦

V (−s) = Πexp
A−V (−s) + Πrem

A−V (−s) , (9)

where Πexp
A−V (−s) is constructed from an experimentally

measured part of the vector and the axial-vector spec-
tral functions. We will proceed in three successive steps
of approximation, including more and more experimental
information in this part, and then check the stability of
the result. In the first approximation, we include solely
the pion pole part,

Πexp
A−V (−s) =

2F 2

s
(1st approximation) (10)

where F is the pion decay constant Fπ ' 92.4 (MeV)
extrapolated to the chiral limit. The remainder part in
(9), Πrem

A−V , is reconstructed from its asymptotic expansion
assuming that four terms in this expansion are known

lim
s→∞ Πrem

A−V (−s) =
a2

s
+

a4

s2 +
a6

s3 +
a8

s4 + . . . . (11)

For instance, in the first order approximation correspond-
ing to (10), one would have a2 = −2F 2, a4 = 0, a6 = λ6,
a8 = λ8. The point is that, firstly, we expect this asymp-
totic expansion to become numerically accurate at rather
low values of the momenta,

√
s ' 2 GeV. Secondly, the

function Πrem
A−V (−s) is expected to be a perfectly smooth

function down to s = 0. In the first order approximation,
it has a logarithmic chiral singularity at s = 0 with a small
numerical coefficient,

lim
s→0

Πrem
A−V (−s) =

1
24π2 log s+cstt (1st approximation) .

(12)
In higher order approximations this singularity will be ex-
actly included in Πexp

A−V (−s) and the remainder part will
be finite at s = 0. It is plausible that a simple rational ap-
proximation should be able to interpolate rather precisely
the remainder function in the range

√
s = [0, 2] GeV. One

must restrict oneself to the class of diagonal Padé approx-
imants in the variable 1/s in order to ensure finiteness at
s = 0. The one of lowest degree which can match four
terms in the asymptotic expansion gives

Πrem
A−V (−s) =

as + b

s2 + cs + d
. (13)

The parameters of the approximant being related to those
occuring in the asymptotic expansion (11) by the simple
relations

d =
a2
6 − a4a8

a2
4 − a2a6

, c =
a2a8 − a4a6

a2
4 − a2a6

,

b = a4 + a2c, a = a2 . (14)

In the second level of approximation we include into
Πexp

A−V (−s) the most significant part of the 2π spectral
function together with the one-pion pole which was con-
sidered before

Πexp
A−V (−s) =

2F 2

s
−
∫ M2

τ

0

ρ◦2π (x)
x + s

dx

(2nd approximation) . (15)

In this approximation, the logarithmic singularity (12) is
properly taken into account provided the spectral function
is correctly normalized at the origin: ρ◦2π (0) = 1/24π2

[10]. The construction of the chiral limit spectral function
ρ◦2π knowing the experimentally measured one ρ2π is not a
completely trivial matter and will be explained in the next
section. The remainder piece is constructed as a Padé ap-
proximant as before except that the asymptotic expansion
parameters ai which enter are now given by

a2 = −2F 2 + I0 , a4 = −I1 , a6 = λ6 + I2 ,

a8 = λ8 − I3 (16)

with

In =
∫ M2

τ

0
dx xn ρ◦2π (x) . (17)

One can of course think of continuing in this way and
include more and more experimental information such that
the remainder function will become numerically smaller
together with the uncertainty associated with the Padé
interpolation procedure. The next step, then, would be
to include explicitly the contribution from the three pion
component of the spectral function,

Πexp
A−V (−s) =

2F 2

s
−
∫ M2

τ

0

ρ◦2π (x)
x + s

dx +
∫ M2

τ

0

ρ◦3π (x)
x + s

dx

(3rd approximation) . (18)

What prevents one from pursuing this construction fur-
ther lies in the difficulty of performing the chiral extrap-
olation, which increases with the pion multiplicity. It will
fortunately appear that convergence is very fast, such that
one hardly needs to go beyond the second approximation.

3 Chiral limit extrapolations

3.1 Fπ

Extrapolation to the chiral limit of Fπ can be performed
fairly easily using known results from chiral perturbation
theory. The value of F , corresponding to mu = md = 0,
ms 6= 0 is related to Fπ at one loop order by the following
expression [10]

F = Fπ

(
1 − 13

192π2

M2
π

F 2
π

− M2
π

6
〈r2〉π

S + O(M4
π)
)

, (19)
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which involves the scalar radius of the pion. Using for
this quantity the updated value as given in [24]: 〈r2〉π

S =
0.60 ± 0.05 fm2, one obtains

F = 86.7 ± 0.6 ± 0.5 MeV (20)

using Fπ = 92.4 ± 0.3 MeV [25]. The second error in the
value of F is a naive order of magnitude estimate of the
size of the O(M4

π) correction in (19). This relatively pre-
cise extrapolation is to be contrasted with the situation
in which one would be willing to further extrapolate to
ms = 0. Let F0 be the corresponding limiting value of Fπ,
it is related to F by the following relation [26]

F0 = F

(
1 − 8msB

F 2 Lr
4(msB) + O(m2

s)
)

, (21)

where B is proportional to the quark condensate in the
chiral limit, B = − 〈ūu〉 /F 2. This relation involves the
low-energy constant L4. Unfortunately, there is no inde-
pendent way of determining L4, which appears here mul-
tiplied by a large numerical factor.

3.2 ρ2π

Let us now discuss the two-pion component of the vector
spectral function. The possibility of performing a reliable
extrapolation here is tied to the property, known for a long
time, of vector meson dominance of the pion electromag-
netic form-factor FV . Defining ρ2π in terms of FV ,

ρ2π(s) = θ(s − 4M2
π)

1
24π2

(
s − 4M2

π

s

) 3
2

|FV (s)|2 , (22)

an excellent fit to the data can be performed up to the
tau meson mass, with a Breit-Wigner function for the ρ
resonance and only a small admixture of higher mass res-
onances,

FV (s) =
1

1 + β + γ
(Bρ(s) + βBρ′(s) + γBρ′′(s)) , (23)

with

Bρ(s) =
M2

ρ

M2
ρ − s − i

√
s Γρ(s)

,

Γρ(s) = θ(s − 4M2
π) Γρ

M2
ρ

s

(
s − 4M2

π

M2
ρ − 4M2

π

)3/2

. (24)

This type of parametrization guarantees that FV (0) = 1
and was proposed in [27]. We will be using the numerical
values obtained from a combined fit of the ALEPH τ → 2π
decay data and the e+e− → π+π− data [12]

Mρ = 773.4 ± 0.9 Γρ = 147.7 ± 1.6 β = −0.229 ± 0.020
Mρ′ = 1465 ± 22 Γρ′ = 696 ± 47 γ = 0.075 ± 0.022
Mρ′′ = 1760 ± 31 Γρ′′ = 215 ± 86 . (25)

Other variants in the functional form of the Breit-Wigner
function Bρ(s) may be used which would result in some-
what different values of the parameters (25). In particu-
lar, the form due to Gounaris and Sakurai [28] has bet-
ter analytical properties and can approximately correctly
reproduce the cut of FV (s) in the chiral limit while the
simpler form (24) produces no cut at all. Nevertheless, for
the problem at hand, we found numerically insignificant
differences in using either parametrization.

It is clear that extrapolation to the chiral limit will
dominantly affect the lower energy part of the spectral
function. Furthermore, the uncertainties in the parameters
of the higher resonances ρ′, ρ′′ are larger than the effect
of setting mu = md = 0. Therefore, in order to obtain the
spectral function in the chiral limit it is only necessary to
evaluate the extrapolated values of the ρ-meson mass and
width, M

◦
ρ and Γ

◦
ρ. Let us now discuss this issue.

In the case of the mass, firstly, one can perform a chiral
expansion. At leading order, linear in the quark masses,
the ρ and K∗ masses are expressed in terms of two inde-
pendent parameters (besides M

◦
ρ) B1 and B8,

Mρ =M
◦
ρ +2m̂B8 + 2m̂B1

MK∗ =M
◦
ρ +(ms + m̂)B8 + 2m̂B1 . (26)

One needs in principle to know both of these parameters
in order to deduce M

◦
ρ. The parameter B8 is easily obtain

K∗ − ρ mass difference,

2m̂B8 =
2(MK∗ − Mρ)

r − 1
, r =

ms

m̂
' 26 (27)

(using the standard chiral expansion framework for eval-
uating the ratio ms/m̂). The value of B1, on the other
hand, cannot be simply determined, but this parameter
is suppressed in the large Nc limit and thus should be
smaller than B8. Neglecting B1 gives M

◦
ρ −Mρ ' −10

MeV. The chiral expansion of the vector meson masses
has been pursued recently beyond linear order [29,30]. In-
cluding the leading correction, which are of order O(m3/2

q )
[29] gives for ρ-meson mass in the form,

Mρ = M
◦
ρ +2m̂(B8 + B1)

− g2M2
π

48πF 2
π

M
◦
K (3 +

4
3
√

3
) − g2M3

π

12πF 2
π

. (28)

Here, the parameter g can be determined approximately
to be g ' 0.60 [31,30] and M

◦
K= limmu,md=0 MK . The

parameter B8 can, again, be determined from the K∗ − ρ
mass difference and one finds that its numerical value is
essentially the same as in the linear expansion. The correc-
tive terms, even though suppressed in the large Nc limit,
turn out to be relatively large and approximately cancel
the contribution proportional to B8. Further corrections
of order O(m2

q) are also generated at one-loop which were
computed in [30]. This contribution depends on a rather
large number of parameters. We will not attempt to take
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it into account quantitatively but simply use the qualita-
tive fact that it goes in the sense of reducing somewhat
the large effect of the O(m3/2

q ) contribution, such that one
can estimate with some confidence that the ρ mass in the
chiral limit should lie in a range,

−10 MeV <∼M
◦
ρ −Mρ

<∼ 0 . (29)

Concerning the chiral limit of the width of the ρ-meson,
we may also try to follow a similar approach and expand
to linear order in the quark masses. Unfortunately, even at
such a low order and dropping Zweig rule violating terms,
there still remains too many undetermined constants. The
most general chiral lagrangian terms describing vector me-
son coupling to pseudo-Goldstone boson pairs (using no-
tations as in [33]) linear in the quark mass matrix are

Lvpp =
iGV√

2

(
〈Vµνuµuν〉 + γ1

〈
{χ(+), Vµν}uµuν

〉
+γ2

〈
Vµνuµχ(+)uν

〉)
. (30)

Note that wave-function renormalization effects of either
the chiral fields or the vector meson fields can effectively
be absorbed into the parameter γ1. It turns out not to be
possible to determine the three constants GV (which de-
termines the chiral limit width) and γ1, γ2 independently.
Qualitatively, at least, this approach suggests, from the
phase-space factor and the pion momentum dependence
of the decay matrix element, that one should expect an
increase of the ρ-meson width in the chiral limit of the
order of 20%. This is a rather large effect and it must be
properly taken into account.

As a way out of these difficulties, one may construct
a set of sum rules involving the difference of the spec-
tral functions ρV − ρ◦V . To the extent that the lower part
of the integration region dominates, such sum rules will
efficiently constrain the chiral limit of the ρ-meson pa-
rameters. One derives a first sum rule by considering the
combination of ΠV (−s) minus its chiral limit counterpart
Π
◦

V (−s). Asymptotically, one has (e.g. [34]),

lim
s→∞ s

(
ΠV (−s)− Π

◦
V (−s)

)
= lim

s→∞
−3
8π2

{
(1 +

8αs(s)
π

)(mu(s) + md(s))2

+(1 +
2αs(s)

π
)(mu(s) − md(s))2

}
= 0 . (31)

Hence, using a spectral representation, the following sum
rule must hold,∫ ∞

0
dx (ρV (x)− ρ◦V (x)) = 0 . (32)

A second sum rule, with even better convergence proper-
ties, is obtained by considering the following s = 0 limit,

ΠV (0) − lim
s→0

(
Π
◦

V (s) +
1

24π2 log
−s

µ2

)
(33)

This expression can be evaluated in two different ways.
Firstly, one can use the chiral expansion of the vector cor-
relation function: a very good level of precision can be
reached thanks to the calculation at two-loop order by
Golowich and Kambor [35]. Secondly, one can write down
a spectral representation: here it is convenient to split the
integration range into [0, 4Mπ

2] and [4Mπ
2,∞]. In the first

range, the integral can be performed explicitly, using the
one-loop expression for the spectral function ρ◦V . Equating
these two evaluations, one derives the second sum rule,∫ ∞

4Mπ
2
dx

ρV (x)− ρ◦V (x)
x

(34)

=
1

12π2

(
log 2 − 4

3

)
+

M2
π

288π4F 2

(
l̄6 − log 4 +

8
3

+
3
2

(l̄5 − l̄6)
[
log

µ2

Mπ
2 +

1
4

log
µ2

M2
K

− 1
4

])

−8M2
π

F 2

[
Q(µ2) + 2R(µ2) +

F 2

768π2M2
K

]
+ O(M4

π) .

In this expression, l̄5 and l̄6 are low-energy constants which
appear at O(p4) [10] and which are well determined, while
R(µ2) and Q(µ2) are O(p6) constants [35] (the appearance
of MK in the above expression is related to the fact that
these constants are appropriate for the three-flavour chi-
ral expansion). One expects R(µ2) to be suppressed com-
pared to Q(µ2) because of the Zweig rule (for values of
the scale µ of the order of 1 GeV) and the latter constant
was evaluated from a sum rule [36]

Q(M2
ρ ) = (3.7 ± 2.0)10−5 . (35)

This enables one to evaluate the entire O(M2
π) contribu-

tion on the right-hand side of (34). The set of two sum
rules (32) and (34) can be considered as a set of non lin-
ear equations from which one can determine M

◦
ρ and Γ

◦
ρ.

We have analyzed this system numerically, and found that
it has a solution, which is unique in a physically mean-
ingful range. Corresponding to the central values of the
parameters cited above and including only the two-pion
component of the vector spectral functions, one obtains

M
◦
ρ −Mρ = −2.4 MeV Γ

◦
ρ= 180.8 MeV . (36)

The uncertainties in this result come from two sources.
Firstly, there is an uncertainty in the integrals of ρV com-
ing from experimental errors in the parameters describing
ρV . Varying the parameters in (25) one finds that, es-
sentially, the error on Mρ and Γρ are the only ones that
matter and that they translate into identical errors on M

◦
ρ

and Γ
◦
ρ. Secondly, we have neglected in the integrals the

contribution of components in the vector spectral func-
tion other than 2π, i.e. ρ4π

V , ρKK̄
V , ρ6π

V , . . . Evidently, one
expects the first of the sum rules to be more sensitive to
these contributions which set up at higher energies. One
can make a rough estimate of the influence of these compo-
nents using the quark-hadron duality idea, i.e. modelling



686 B. Moussallam: Reanalysis of the Das et al. sum rule and application to chiral O(p4) parameters

the sum of all contributions by a continuum,

ρcont
V (s) =

1
4π2 θ(s − M2

cont) (37)

normalized to the asymptotic QCD prediction and start-
ing at some threshold mass Mcont. A typical value used in
sum rules analysis is Mcont ' 1.5 GeV. For the problem
at hand, we need to know also how this continuum mass
varies when going to the chiral limit. There is of course
no way to precisely evaluate that, but it seems not un-
reasonable to assume −10 <∼ Mcont− M

◦
cont

<∼ 10 MeV,
which leads to a variation ∆ M

◦
ρ= ±8 MeV. The conclu-

sion is that the chiral mass is, in fact, not determined to
a better accuracy from the sum rules than it was from
the chiral expansion as discussed above. Imposing that
the sum rule result be the same as that found before, i.e.
M

◦
ρ −Mρ = −5±5 MeV, is achieved by taking the contin-

uum mass parameter in the range M
◦
cont −Mcont = 2 ± 6

MeV. Solving the two sum rule equations simultaneously
yields the chiral mass and width as approximately linear
functions of M

◦
cont −Mcont and they are found to lie in

the range

M
◦
ρ −Mρ = −5±5 MeV Γ

◦
ρ= 180.0±1.5 MeV . (38)

One observes that the width gets determined with a much
smaller error than the mass. The spectral function ρ2π

and its chiral extrapolation are shown in Fig. 1. From this
figure one observes, in particular, that the influence of
setting mu, md to zero is felt mostly in the low-energy
region,

√
s ≤ 1 GeV, consistently with the starting point

assumption.

3.3 ρ3π

The spectral function piece ρ3π is not known to the same
accuracy as ρ2π. Furthermore, it will appear that extrap-
olation to mu = md = 0 is plagued with larger uncer-
tainties. However, ρ◦3π is not an essential ingredient, its
explicit inclusion turns out to have very little effect and
only serves to verify the stability of the calculation. For
this purpose, an approximate knowledge of ρ◦3π may be
sufficient. As before, one expects a sizable contribution
from a resonance, the a1(1260) in this case. However, be-
cause the a1 has a larger mass than the ρ and especially
because it has a much larger width it is more questionable
that the background contribution will be negligible. We
will anyway follow the model of Kühn and Santamaria
[27] which assumes complete dominance of the a1 and
matches with the correct chiral O(p2) behaviour of the
axial current matrix element at low energy ( note that
the O(p4) expression has been recently worked out [37]).
One assumption in this model is that the a1 decays via a
two step process: a1 → ρπ → 3π or a1 → ρ′π → 3π with
a small probability. In principle, nothing prevents the a1
decay to proceed also via the a1 → σπ channel1. A clear

1 We approximate, as usual, a strongly interacting pion pair
in an S-wave by a fictitious or real but very wide σ meson
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Fig. 1. Two-pion component of the vector spectral function
and its chiral limit extrapolation obtained from solving the
non-linear system of two sum rule equations, as explained in
the text

signature for this process would be a difference in the a1
decay rates into 2π−π+ and 2π0π−. These two rates have
now been measured separately for the first time by the
ALEPH collaboration [15] and found to be equal to a very
good precision (R−−+ = 9.1 ± 0.2%, R00− = 9.2 ± 0.2%).
This measurement supports the decay model of [27]. This
model is embodied in the following parametrization〈

π−(q1)π−(q2)π+(q3)|ūγµγ5d|0〉
= −i

2
√

2
3F

Ba1(s) (Bρρ′(s2)V
µ
1 + Bρρ′(s1)V

µ
2 ) (39)

with

V µ
i = qµ

i − qµ
3 − Qµ Q.(qi − q3)

s
,

Q = q1 + q2 + q3, si = (Q − qi)2 (40)

and

Bρρ′(si) =
Bρ(si) + β′Bρ′(si)

1 + β′ ,

Ba1(s) =
M2

a1

M2
a1

− s − iMa1Γa1g(s)/g(M2
a1

)
(41)

where g(s) is a three-body phase-space integral which must
be computed numerically (see [27] for more details 2). We
have determined the a1 mass and width as well as the de-
cay parameter β from a simple-minded fit of the ALEPH

2 An approximate analytical form of g(s) is given in this
reference but one must be careful that it is only valid for the
physical value of Mπ and becomes incorrect for Mπ = 0



B. Moussallam: Reanalysis of the Das et al. sum rule and application to chiral O(p4) parameters 687

0

0.001

0.002

0.003

0.004

0.005

0.006

0 0.5 1 1.5 2 2.5 3

(
1
/
N
t
o
t
)
 
d
N
/
(
0
.
0
5
 
G
e
V
2
)

s (GeV2)

experimental
fit

Fig. 2. Branching fraction for the mode τ → π−π−π+ν as a
function of the three-pion invariant mass squared. The exper-
imental results from ALEPH are displayed together with our
fit based on the Kühn-Santamaria parametrization

data3 [15] assuming energy independent errors. The re-
sulting values for the a1 parameters obtained in this way
are,

Ma1 = 1.28 ± 0.01 GeV, Γa1 = 0.67 ± 0.05 GeV,

β′ = −0.27 ± 0.03 . (42)

The experimental invariant mass distribution for the mode
τ → π−π−π+ν is shown in Fig. 2 together with the result
of the fit using the above parametrization.

Now we would like to construct the chiral limit extrap-
olation of the 3π spectral function. As before, we disregard
the modification of the parameters associated with the ρ′
as it makes a relatively minor contribution to the spectral
function. Concerning the ρ meson, the extrapolation of its
mass and width were discussed in the previous subsection,
there essentially remains to estimate the modification of
the a1 mass and width parameters. Concerning the mass,
one encounters the first difficulty that the quark mass ma-
trix not only shifts the 1++ multiplet but also mixes the
states with non-zero strangeness with those of the 1+−
multiplet. Expanding to linear order in the quark masses,
assuming ideal mixing, and using the ss̄ member of the
multiplet gives,

M
◦
a1' Ma1 − Mf1(1510) − Ma1

(r − 1)
. (43)

This estimate must be considered as very approximate
because of the additional problem that the assignment of

3 The data can be found on the website
http://alephwww.cern.ch/ALPUB/paper/paper98/1
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Fig. 3. Three-pion component of the axial-vector spectral
function and its chiral limit extrapolation

the f1(1510) as the ss̄ member of the a1 nonet [25] is far
from certain [38].

The value of the a1 width, finally, in the chiral limit
is constrained by a sum rule exactly analogous to (32) in
the axial channel,∫ ∞

0
dx (ρA(x)− ρ◦A (x)) = 2F 2 − 2Fπ

2 . (44)

In this equation the one-pion component is excluded from
ρA and its contribution appears on the right-hand side.
As before, the additional assumption must be made that
this equation constrains mostly the low energy part of the
spectral function and, as a consequence, can essentially
be interpreted as an equation for the 3π component of
ρA. Using M

◦
a1 −Ma1 = −10 MeV, the sum rule gives

the chiral width: Γ
◦
a1= 0.70 GeV. We shall be content

with a single sum rule here even though it is possible in
principle to exploit a second sum rule in analogy with the
case of the ρ meson. The result for the physical three-pion
spectral function and its chiral limit is displayed in Fig. 3.

4 Results

Now that we have defined an approximation scheme for
calculating Πexp

A−V and Πrem
A−V it is straightforward to com-

pute the sum rule integral, (2). Before we do so, it is in-
structive to have a look at the integrand, which is dis-
played in Fig. 4 and Fig. 5 for the three levels of approxi-
mation.

Figure 4 shows the low energy region 0 ≤ √
s ≤ 2 GeV.

One might believe that this part will dominate the inte-
gral, it actually turns out that the asymptotic tail makes
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a non negligible contribution of approximately 20%. It is
one advantage of this method that it introduces no error
due to truncation of the integral. One observes that ap-
proximations 2 and 3 generate curves which can hardly
be distinguished. Figure 5 shows a region of larger values
of the integration variable s from which one can appreci-
ate the approach to the asymptotic regime. The two-terms
asymptotic expansion is seen to be accurate at the 10%
level for

√
s = Mτ and becomes very accurate provided
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Fig. 6. Plot of the remainder part Πrem
A−V (−s) in the sum rule

integrand (see Sect. 2) for the three successive approximations

Table 1. Numerical results from the sum rule (2) correspond-
ing to the central values of the physical parameters. Z and δ
are defined in the text

Approx. 1 Approx. 2 Approx. 3

Z 0.899 0.854 0.852
δ 0.0177 0.0667 0.0683

√
s >∼ 2.5 GeV. While the sum of Πexp

A−V and Πrem
A−V ap-

pear to be remarkably stable they are individually quite
different from one approximation to the other. This is il-
lustrated in Fig. 6 showing Πrem

A−V , which is the part where
the Padé interpolation procedure is used: the figure shows
how this part becomes smaller as one includes more ex-
perimental information from the spectral functions. The
curves are seen to be smooth, flat, an exhibit no change
of sign thereby justifying, a posteriori, the use of a simple
rational approximation.

We can now perform a stringent test of the interpola-
tion procedure by considering the integrand at low energy,
comparing it with the chiral perturbation theory expecta-
tion,

lim
s→0

[
−24π2

(
Π
◦

A−V (−s) − 2F 2

s

)
+ log

s

Mπ
2 − 5

3

]
= l̄5 .

(45)
The low-energy constant l̄5 is known from the one-loop
analysis of the charge radius of the pion 〈r2〉π

V and of the
pion radiative decay amplitude, π → eνγ: l̄5 = 13.1 ± 1.3
(using Fπ = 92.4). An additional 5 − 10% uncertainty
is expected from O(M4

π) contributions to these observ-
ables, which necessitate a two-loop analysis (at present
only π → eνγ has been analyzed at this level of accuracy
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[39]). Using our construction for ΠA−V (−s) and comput-
ing numerically the limit (45) we find,

l̄5 = 11.8 (46)

(the result differ in approx.2 and approx.3 by less than 1%)
which is slightly smaller but compatible with the one-loop
determination quoted above. This is a rather non trivial
check of the quality of the interpolation from the low-
energy domain of the chiral expansion up to the domain
of large energies, where the operator-product expansion
makes sense. The result of the sum rule evaluation of the
low-energy constant C are displayed in Table 1. We show
firstly the dimensionless quantity Z = C/F 4 which is of
order unity and also the quantity δ ≡ (M2

π+ − M2
π0 −

2e2C/F 2)/(M2
π+ − M2

π0) which measures the relative im-
portance of the subleading terms in the expansion of the
π+ − π0 mass difference.

The contribution of the subleading terms is predicted
to be positive and have a relative magnitude of 7%. This,
of course, is in agreement with the upper bound that one
obtains from naive dimensional analysis of the low energy
constants, which is 20%. What is the accuracy of this eval-
uation? We can identify three sources of error: 1) the error
coming from the uncertainties in the physical parameters
that enter the calculation. 2) An error coming from the
chiral limit extrapolation and 3)an error associated with
the assumption that λ6 and λ8 are constants, which is only
an approximation. Concerning the first source of error, we
have varied all the physical parameters independently and
calculated the variation of the result for both approxima-
tions 2 and 3. The result is shown in Table 2 below. The
parameters which are not shown like Mρ′ , Γρ′ induce very
small errors. It is interesting that the individual errors are
rather different in the two approximations. For instance,
the error induced by F (here the chiral limit extrapolation
error was included as well) or by λ6, λ8 are significantly
smaller in approx. 3 than in approx. 2. This does not im-
ply that the third approximation has a smaller error, as it
exhibits a greater sensitivity to the tail of the vector spec-
tral function. If one simply adds all the errors one finds
very closely the same number for the two approximations,
respectively 7.3% and 7.5%. This is suggestive that both
the central value and the error are just as reliably ob-
tained from approx.2. In this approximation, we can also
estimate the error due to the evaluation of the chiral limit
values M

◦
ρ and Γ

◦
ρ. Varying the continuuum contribution

in the set of sum rules as discussed in Sect. 3.2 we obtain
a small contribution of 0.2%.

The last uncertainty arises from the assumption made
so far that λ6 and λ8 are constants which is only true at
leading order in αs. This point can be investigated quanti-
tatively in the case of λ6. Using the anomalous-dimension
matrix provided in [23], one can resum the leading loga-
rithms and obtain,

λ6(s)

=
64παs(µ)

9

{
(Oa

6(µ) +
1
6
Ob

6(µ))
[
1 +

9αs(µ)
4π

log
s

µ2

]−1/9

+(
1
8
Oa

6(µ) − 1
6
Ob

6(µ))
[
1 +

9αs(µ)
4π

log
s

µ2

]−10/9

+
9αs(µ)

32π

[
119
6

Oa
6(µ) + Ob

6(µ)
]}

. (47)

In this expression, Oa
6 and Ob

6 are the vacuum expectation
values of the two operators

Oa
6 =

〈
ūγµγ5 λa

2
dd̄γµγ5 λa

2
u − ūγµ

λa

2
dd̄γµ λa

2
u

〉
Ob

6 =
〈
ūγµγ5dd̄γµγ5u − ūγµdd̄γµu

〉
(48)

with λa a color-space Gell-Mann matrix. In principle, in
order to take the s-dependence correctly into account,
one needs to know the values of both Oa

6 and Ob
6. How-

ever,these two operators are not exactly on the same foot-
ing since Ob

6 appears multiplied by one factor of αs more
than Oa

6 whenever the logarithm is not too large. Further-
more, Ob

6 is suppressed in the large Nc limit. A plausi-
ble approximation, then, would be to ignore it altogether.
Another plausible approximation is that of vacuum satu-
ration [23], which yields the relation,

Ob
6 =

3
4
Oa

6 . (49)

The energy dependence of λ6 is very much suppressed in
this approximation. As far as the integration over the cir-
cle in the complex plane is concerned (see (7)), we find
that dropping the energy dependence is a very good ap-
proximation in any case, which does not generate an un-
certainty in the determination of λ6(Mτ ) larger than 1%.
One observes from (47) that λ6 is a steadily decreasing
function of s. Our construction can be seen as a proce-
dure for smoothly matching the low-to-medium and the
high energy regimes [16]. In this sense it is clear that one
must choose λ6 ≡ λ6(s0) where s0 is the value of s where
the asymptotic regime sets in, i.e. s0 must lie between M2

τ

and 2M2
τ , say, as can be seen from Fig. 4. This determines

the constant value of λ6 to use within 2% approximately.
Then, one must take into account the contribution of the
logarithms in the high energy region of the sum rule inte-
gral. This is found to introduce a rather small correction
to the value of C which ranges from 0.4 to 0.8% depending
on the hypothesis made for Ob

6. In conclusion, we obtain
that the overall relative error in the determination of the
parameter C does not exceed 10%.

Let us now consider the implication of this result for
O(p4) low-energy parameters using the chiral expansion
of the π+ − π0 mass difference at this order [7],

M2
π+ − M2

π0

=
2e2C

F 2

(
1 − M2

π

16π2F 2

(
3 log

M2
π

µ2 + 1
))

+
e2M2

π

16π2

(
−3 log

M2
π

µ2 + 4
)

+
2M4

π

F 2

(
md − mu

md + mu

)2

l7

+2e2M2
πFk(µ) + O(e4) (50)
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Table 2. Percentage relative variation of the result for C/F 2 correspond-
ing to the variation of the various input physical parameters within their
error bars. The second and third lines of the table correspond to the cal-
culation in approximation 2 and 3 respectively

parameters F λ6 λ8 Mρ Γρ β γ Ma1 Γa1

error(2) 0.9 5.1 1.0 0.02 0.04 0.2 0.05 − −
error(3) 0.04 3.4 0.2 0.01 0.4 1.4 1.5 0.2 0.4

with

Fk(µ) = −2kr
3(µ) + kr

4(µ) + 4kr
6(µ) + 4kr

8(µ) . (51)

The O(e4) contribution which must technically be counted
as O(p4) can be estimated to be numerically smaller by
one order of magnitude than the O(e2M2

π) or the O((mu−
md)2) ones and is neglected here. From this, and using
mu/md = 0.55 [40], one deduces,

2.2 l7 + Fk(Mρ) = (−7.1 ± 3.0) 10−2 (52)

which is our main result. For comparison, on the basis of
naive dimensional analysis alone, one would obtain for the
same quantity that it must lie in the range ±8 10−2. The
parameter l7 which appears in (52) is not very precisely
known but a simple resonance-saturated sum rule gives an
estimate [10] l7 ' 0.7 10−2.

5 Conclusion

To summarize, we have attempted an evaluation of the
low-energy constant C with a controlled error, on the ba-
sis of the exact sum rule expression of Das et al.. The main
practical difficulty, which is present even if infinitely pre-
cise experimental data were available, lies in the necessity
of extrapolating the integrand to the chiral limit. A calcu-
lational procedure was proposed in which one first recon-
structs the relevant current-current correlator in euclidian
space making use of its smoothness properties together
with the experimental determination of two asymptotic
expansion parameters. An approximation scheme can be
developped in which one includes spectral function com-
ponents with higher and higher pion multiplicities. This
expansion was argued to converge very rapidly such that,
in practice, it is only necessary to include the one-pion
and the two-pion components. The construction of the
chiral limit makes use of recent work both on application
of chiral perturbation theory to the vector meson masses
and of chiral calculations at two-loop order of current-
current correlation functions. We have shown that under
the assumption that the relative error on the asymptotic
parameter λ6 is of the order of 10% (this is the actual ex-
perimental error but it does not include the uncertainty
stemming from the truncation of the OPE, which is more
difficult to evaluate), one can determine the parameter C
with an error of slightly less than 10% and deduce a mean-
ingful estimate for a combination of subleading parameters

ki. These parameters are primarily useful in calculations
of radiative corrections at low energy. Another area where
the computation of the photon loop is of interest, is in
relation with the K+ − K0 mass difference and the issue
of Dashen’s theorem violation. It is possible that the con-
straint obtained here may prove useful in this context as
well.
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